Estimating flood risk

What is risk?

- Risk = (likelihood of hazard occurring) x (consequences of the hazard)
- Good risk management might aim to:
- Reduce the likelihood of the hazard occurring
- Reduce the consequences of the hazard
- This seems very obvious, but good risk management is actually very difficult!

Risk management in practice

- Risk avoidance
- Don't invest in property etc. to avoid the liability that goes with it
- By avoiding risk, you are also avoiding any potential rewards
- Some level of risk is necessary (acceptable risk)
- Assumes that the risks are known
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Risk management in practice

- Risk reduction
- Methods to reduce the likelihood and severity of loss

To be effective, risks must be properly understood
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Risk management in practice

- Risk retention

- Accepting loss when it occurs
- Includes "self-insurance". Common practice in business - setting capital aside
- All risks that are not avoided or transferred are retained by default:
- Uninsurable risk
- Unknown risk

To be effective, risks must be properly understood

Risk management in practice

- Risk transfer
- Causing another party to accept the risk
- Insurance
- For the insurance company, over time losses must be less than income from insurance premiums
- Assumes losses are all economic or can be compensated for financially.

To be effective, risks must be properly understood (appropriate cover and premium).

Understanding risk

The Changing Business Risk Environment:

- Physical (Flooding, drought, landslides, hurricanes)
- Political (Instability, water wars? Environmental terrorists?)
- Economic (Changes in supply networks, currency fluctuations)
- Social (Migration, civil unrest)
- Regulatory (Changing tax regimes, regulatory structures)

Structural and Commercial (emerging liability risks, due diligence, assets and liability management)

These are inter-related, making risk complex
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Understanding risk

- In all areas of risk management, risk must be well understood.
- Of course, this means understanding both
- Likelihood and
- Consequences
- Requires good risk assessment

Probabilistic risk assessment

- Commonly used in engineering
- Characterised by:
- the magnitude (severity) of the possible adverse consequences
- the likelihood (probability) of occurrence of each consequence
- Attempts to characterise risk precisely
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Flood risk: defining probability

- What is the probability of a flood occurring?
- Usually defined using past observations
- But extreme events are rare: few observations

Flood risk: defining probability

- Annual exceedance probability:
- The probability that a flood will exceed a given level in any year
- Return periods (or recurrence interval):
- The average frequency of occurrence of an event of a particular magnitude
- "1 in 100 year event"
- The inverse of the exceedance probability - i.e. " 1 in 100 year" return period means a $1 / 100$ (or 1%) exceedance probability in any year
- Problem of perception: a " 1 in 100 year" event could occur in consecutive years - no regularity implied

Flood risk: defining probability

- Return period $\left(T_{r}\right)$:

$$
T_{r}=\frac{n+1}{m}
$$

- Annual exceedance probability (p): \qquad

$$
p=\frac{1}{T_{r}}=\frac{m}{n+1}
$$

- where: $\boldsymbol{n}=$ number of years on record; $\boldsymbol{m}=$ rank of the event being considered

Calculating Return Period (T_{r})

Gauged data
Maximum annual value
Rank
Calculate return period
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Return Periods

- The return period of the maximum flood in our observations will be equal to the number of years of observations plus 1.
- In our date set, this is 87 , giving an annual exceedance probability of $1 / 87=0.012$ or 1.2%
- This is likely to be an extremely inaccurate estimate of that event's actual probability
- The longer the observation record, the more accurate the probability estimates (but the most extreme events will still be inaccurately estimated).

Flood risk: defining probability

- If a flood of a particular size (or greater) occurs on average once every T_{r} years, then the probability, p, of such an event being exceeded in any year is:

$$
p=1 / T_{r}
$$

- Then, the probability that there will be NO such flood in any year is $(1-p)$ and over the next \boldsymbol{n} years is:

$$
P_{n}=(1-p)^{n}
$$

Flood risk: defining probability

- If a flood of 5 m or greater occurs on average once every 50 years, what is the probability it will not occur for the next 20 years?
- $T=50 ; P=0.02 ; n=20$

$$
\begin{aligned}
P_{n} & =(1-P)^{n} \\
P_{20} & =(1-0.02)^{20}=0.67
\end{aligned}
$$

- Therefore, there is a:
- 67% chance that a 50 -year flood will not occur in the next 20 years
- 33% chance that at least one such flood will occur (there may be more than one)

Flood risk: defining probability

- You are building a bridge and want to be 95% sure that it will not be hit by a 500-year flood. How many years should you expect to have at this level of certainty? \qquad
- Solve $P_{n}=(1-p)^{n}$ for n using $p=0.002$ and $P_{n}=0.95$:

$$
\begin{aligned}
n & =\frac{\ln \left(P_{n}\right)}{\ln (1-p)} \\
& =\frac{\ln (0.95)}{\ln (0.998)}=25.62 \text { years }
\end{aligned}
$$

Flood risk: defining probability
$n=\frac{\ln \left(P_{n}\right)}{\ln (1-p)}$

| Tr | p | $n\left(P_{n}=0.50\right)$ | $n\left(P_{n}=0.80\right)$ | $n\left(P_{n}=0.95\right)$ | $n\left(P_{n}=0.99\right)$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1.001 | 0.999 | $\mathbf{0 . 1 0}$ | $\mathbf{0 . 0 3}$ | $\mathbf{0 . 0 1}$ | $\mathbf{0 . 0 0 1}$ |
| 2 | 0.5 | $\mathbf{1 . 0 0}$ | $\mathbf{0 . 3 2}$ | $\mathbf{0 . 0 7}$ | $\mathbf{0 . 0 1}$ |
| 5 | 0.2 | $\mathbf{3 . 1 1}$ | $\mathbf{1 . 0 0}$ | $\mathbf{0 . 2 3}$ | $\mathbf{0 . 0 5}$ |
| 10 | 0.1 | $\mathbf{6 . 5 8}$ | $\mathbf{2 . 1 2}$ | $\mathbf{0 . 4 9}$ | $\mathbf{0 . 1 0}$ |
| 25 | 0.04 | $\mathbf{1 6 . 9 8}$ | $\mathbf{5 . 4 7}$ | $\mathbf{1 . 2 6}$ | $\mathbf{0 . 2 5}$ |
| 50 | 0.02 | $\mathbf{3 4 . 3 1}$ | $\mathbf{1 1 . 0 5}$ | $\mathbf{2 . 5 4}$ | $\mathbf{0 . 5 0}$ |
| 100 | 0.01 | $\mathbf{6 8 . 9 7}$ | $\mathbf{2 2 . 2 0}$ | $\mathbf{5 . 1 0}$ | $\mathbf{1 . 0 0}$ |
| 200 | 0.005 | $\mathbf{1 3 8 . 2 8}$ | $\mathbf{4 4 . 5 2}$ | $\mathbf{1 0 . 2 3}$ | $\mathbf{2 . 0 1}$ |
| 500 | 0.002 | $\mathbf{3 4 6 . 2 3}$ | $\mathbf{1 1 1 . 4 6}$ | $\mathbf{2 5 . 6 2}$ | $\mathbf{5 . 0 2}$ |
| 1000 | 0.001 | $\mathbf{6 9 2 . 8 0}$ | $\mathbf{2 2 3 . 0 3}$ | $\mathbf{5 1 . 2 7}$ | $\mathbf{1 0 . 0 5}$ |

\qquad
\qquad
\qquad
\qquad
\qquad

Flood risk: defining probability

- You want to be 95% sure that the bridge will not flood in the next 50 years. What is the return period you must prepare for?

$$
\begin{aligned}
T_{r} & =\frac{1}{1-P_{n}^{(1 / n)}} \\
& =\frac{1}{1-0.95^{0.02}}=975.28
\end{aligned}
$$

Therefore, to have a high degree of certainty over an extended period of time you must prepare for an extreme event.

Extrapolating Return Periods

- In order to estimate the levels of more extreme events, we need to fit a probability density function (pdf) to the observed data.
- Numerous different methods -
- Normal, Log Normal
- Gumbel extreme value type 1
- Log-Pearson Type III
- This is the recommended technique for flood frequency analysis in the United States (US Water Advisory Committee 1982)

Extrapolating return periods

- We should not over-extrapolate -
- As we move beyond the observed record, accuracy drops quickly
- We should not predict return periods for more than twice the length of the return period (i.e. 100 years of observation to predict the level of a flood with a 200 year return period).

Flood frequency analysis - issues

- A major assumption is that the observation record should be from homogeneous conditions:
- This means that each flood needs to occur under the same type of conditions.
- Basin alterations (e.g. urbanisation) alter the behaviour of flood events, and can dramatically reduce the number of years of homogeneous data
- For example, urbanisation 20 years ago means that a 100 -year record could be reduced to only 20 useable years
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Flood frequency analysis

\author{

- More Information:
}
- Oregon State University website:
- http://water.oregonstate.edu/streamflow/analysis/floodfreq/
- MetEd website - Flood Frequency course:
- http://www.meted.ucar.edu/hydro/basic/FloodFrequency/ \qquad
\qquad
\qquad
\qquad

Flood frequency and climate change

- As well as changing averages, climate change is likely to affect extremes of distributions.
- Possible effect of climate change on events:
- Increased frequency and magnitude (return periods decreasing)
- Therefore, increased probability and consequences
- Changes the risk and may increase vulnerability (risk management strategy no longer sufficient).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Flood frequency and climate change

- Climate change = non-homogeneous conditions
- Past flood events are no longer a reliable indicator of the probability of future events \qquad
- Complicates our analysis - difficult to determine length of reliable record
- Change in probability may be cyclical in line with natural climate variability - e.g. ENSO

Flood frequency and climate change \qquad

- Lehner et al. (2006):
- The study finds that, as early as 2020, across large parts of the northern E

Iberian peninsula - floods with a retu to occur every $40-$ - the 100-year even

Flood risk and climate change

- If climate change is changing risk, good risk management will need to predict this - requires climate prediction
- Problem - this is extremely difficult, and full of uncertainty!

