Estimating flood risk

GG22A: GEOSPHERE & HYDROSPHERE Hydrology

What is risk?

• Risk = (likelihood of hazard occurring) x (consequences of the hazard)

- Good risk management might aim to:Reduce the likelihood of the hazard occurring
 - Reduce the consequences of the hazard
- This seems very obvious, but good risk management is actually very difficult!

Risk management in practice

Risk avoidance

- Don't invest in property etc. to avoid the liability that goes with it
- By avoiding risk, you are also avoiding any potential rewards
- Some level of risk is necessary (acceptable risk)
- Assumes that the risks are known

Risk management in practice

Risk reduction

• Methods to reduce the likelihood and severity of loss

To be effective, *risks must be properly understood*

Risk management in practice

- Risk retention
 - Accepting loss when it occurs
 - Includes "self-insurance". Common practice in business
 – setting capital aside
 - All risks that are not avoided or transferred are retained by default:
 - Uninsurable risk
 - Unknown risk

To be effective, risks must be properly understood

Risk management in practice

Risk transfer

- · Causing another party to accept the risk
- Insurance
 - For the insurance company, over time losses must be less than income from insurance premiums
 - Assumes losses are all economic or can be compensated for financially.

To be effective, *risks must be properly understood* (appropriate cover and premium).

Understanding risk The Changing Business Risk Environment:

- Physical (Flooding, drought, landslides, hurricanes)
- Political (Instability, water wars? Environmental terrorists?)
- Economic (Changes in supply networks, currency fluctuations)
- Social (Migration, civil unrest)
- Regulatory (Changing tax regimes, regulatory structures)
- Structural and Commercial (emerging liability risks, due diligence, assets and liability management)

These are inter-related, making risk complex

Understanding risk

- In all areas of risk management, risk must be well understood.
- Of course, this means understanding both
 - Likelihood and
 - Consequences
- Requires good risk assessment

Probabilistic risk assessment

- Commonly used in engineering
- Characterised by:
 - the magnitude (severity) of the possible adverse consequences
 - the likelihood (probability) of occurrence of each consequence
- Attempts to characterise risk precisely

Flood risk: defining probability

- What is the probability of a flood occurring?
- Usually defined using past observations
 - But extreme events are rare: few observations

Flood risk: defining probability

- Annual exceedance probability:
 - The probability that a flood will exceed a given level in any year
- Return periods (or recurrence interval):
 - The average frequency of occurrence of an event of a particular magnitude
 - "1 in 100 year event"
 - The inverse of the exceedance probability i.e. "1 in 100 year" return period means a 1/100 (or 1%) exceedance probability in <u>any</u> year
 - Problem of perception: a "1 in 100 year" event could occur in consecutive years no regularity implied

Flood risk: defining probability

• Return period
$$(T_r)$$
:
 $T_r = \frac{n+1}{m}$

• Annual exceedance probability (p):

$$p = \frac{1}{T_r} = \frac{m}{n+1}$$

1

• where: *n* = number of years on record; *m* = rank of the event being considered

Calculating Return Period (T_r)

1. Gauged data

- 2. Maximum annual value
- 3. Rank
- 4. Calculate return period

Return Periods

- The return period of the maximum flood in our observations will be equal to the number of years of observations plus 1.
 - In our date set, this is 87, giving an annual exceedance probability of 1/87 = 0.012 or 1.2\%
- This is likely to be an extremely inaccurate estimate of that event's actual probability
 - The longer the observation record, the more accurate the probability estimates (but the most extreme events will still be inaccurately estimated).

Flood risk: defining probability

 If a flood of a particular size (or greater) occurs on average once every *T_r* years, then the probability, *p*, of such an event being exceeded in any year is:

$$p = 1/T_{p}$$

 Then, the probability that there will be NO such flood in any year is (1 – p) and over the next n years is:

$$P_n = (1-p)^n$$

• Solve $P_n = (1 - p)^n$ for *n* using p = 0.002 and $P_n = 0.95$:

$$n = \frac{\ln(P_n)}{\ln(1-p)}$$
$$= \frac{\ln(0.95)}{\ln(0.998)} = 25.62 \text{ years}$$

Flo	bod	ris	k: def	ining	proba	bility
	ln(F			0	p. 0.00	
$n = \frac{1}{1}$	n(1 -					
	Tr		n(P = 0.50)	n (P_ = 0.80)	n(P = 0.95)	n(P = 0.99)
	1.001	0.999	0.10			· //
	2	0.5	1.00	0.32	0.07	0.01
	5	0.2	3.11	1.00	0.23	0.05
	10	0.1	6.58	2.12	0.49	0.10
	25	0.04	16.98	5.47	1.26	0.25
	50	0.02	34.31	11.05	2.54	0.50
	100	0.01	68.97	22.20	5.10	1.00
	200	0.005	138.28	44.52	10.23	2.01
	500	0.002	346.23	111.46	25.62	5.02
	1000	0.001	692.80	223.03	51.27	10.05

next 50 years. What is the return period you must prepare for? 1

$$T_r = \frac{1}{1 - P_n^{(1/n)}}$$
$$= \frac{1}{1 - 0.95^{0.02}} = 975.28$$

Therefore, to have a high degree of certainty over an extended period of time you must prepare for an extreme event.

- events, we need to fit a *probability density function* (pdf) to the observed data.
- Numerous different methods
 - Normal, Log Normal
 - Gumbel extreme value type 1
 - Log-Pearson Type III
 - This is the recommended technique for flood frequency analysis in the United States (US Water Advisory Committee 1982)

Pas	te 🦼 🕯	в <i>.г.</i> <u>и</u>	· . · · · · · =		다. 전·	General	•	of T_r					
lpb	ioard 5		Font G	Alignment		Nu	nber	6	Styles		Cells		Editing
	Z48	•	(fr										
	A	В	С	D		E	F		G	н	1	J	K
	Rank	Year	Ranked Max Streamflow, Q (m3s-1)	Return Period, Tr = [(n+1)/m]	Prot	edence bability I/Tr)							
	1	1947	961.3	87.0		0.011		Mean		554.3			
	2	1960	931.5	43.5		0.023		Standar	d deviation	149.252			
	3	1965	905.8	29.0		0.034							
	4	1946	901.6			0.046							
	6	1941	863.1	17.4		0.057		Tr		к			
	6	1948	828.8	14.5		0.069			1.0001				
	7	1950	799.0	12.4		0.080			1.01	-1.64294			
	8	1968	786.4	10.9		0.092			1.1	-1.13224			
4	10	1925	756.3	9.7		0.103			1.25	-0.62125			
	10	2000	756.3			0.115			1.5	-0.52342			
	12	1929	739.2	7.3		0.128			÷	0.719893			
	13	1925	709.3	6.7		0.138			10	1.305227			
	14	1964	709.3	6.2		0.145			26	2 044797			
	15	1928	687.9	5.8		0.172			50	2 593452			
	16	1939	675.1	5.4		0.184			100	3 138056			
	17	1936	666.5	5.1		0.195			200	3.680673			
	perio	d of 7	e flood with a ', will be K sta	ndard		0.207 0.218 0.230 0.241 0.253			500	4.396554	(7	
deviations above the average maximum annual flood.						0.264 0.276 0.287	<i>K</i> =	-0.78	8 0.5	77 + lı	ı [ln	$\frac{1}{T_r}$	<u> </u>

0) H 🛛	• (H •) =	1		g	054001.xlsx	- Microsa	ft Excel					
2 - 2		mbe	el metho		siew	View General		3. Fi and	'	alue of		each F	e de
Clipt	ooard 🙃		Font G	Alignment		Nut	nber		Styles		Cells		Editing
	U46	•	(fr										
	A	В	С	D		E	F		G	н	1	J	К
1	Rank	Year	Ranked Max Streamflow, Q (m3s-1)		Prof	edence sability I/Tr)							
2	1	1947	961.3			0.011		Mean		554.3			
3	2		931.5			0.023		Stan	dard deviation	149.252			
4	3	1965	905.8			0.034							
5	4	1946	901.6			0.046		_					
6	6	1941	863.1	17.4		0.057		Tr		ĸ	q_Tr		
7	6		828.8			0.069			1.0001	-2.18192			
8	7		799.0			0.080			1.01	-1.64294			
9	8		786.4			0.092			1.1	-1.13224 -0.82125	386.2653 431.6813		
10	10		756.3	9.7		0.103			1.25	-0.62125			
11	10		749.3			0.115			1.5	-0.52342			
12	11		739.2			0.126			2	0.719893	661.7		
14	13		709.3			0.138			10	1.305227	749.0622		
15	14		709.3			0.145			26	2.044797	859.4445		
16	15		687.9			0.101			50	2.593452			
17	16		675.1	6.4		0.184			100	3.138056			
18	17		666.5			0.195			200	3.680673			
19	18		662.3			0.207			500	4.396554	1210.449		
20	19		653.8			0.218							
21	20		651.5			0.230							
22	21	1955	641.0	4.1		0.241				_			
23	22	1958	641.0	4.0		0.253			<i>a</i> .	- 0	$\perp K$	-	
24	23	1990	622.9	3.8		0.264			q_{T}	- y	+K	O_a	
25	24	1998	609.4	3.6		0.276			11r	-		- 4	
26	25	1924	606.7	3.5		0.287							
27	26		606.7			0.299							
	b b) 7	Los Baarros	type 3 Gumbel / Log	Berman hans 2/1	0 /0	heats /	054001	100	1.4	-		_	

			curo	~ / I	pe III m	cenou		 10 	виц		= 🖼 🕀 • 🖌
	K53	•	5								
	A	В	С	D	E	F	G	Н	1	J	K
	Rank	Year	Ranked Max Streamflow, 0 (m3s.1)	Return Period, Tr = [(n+1)/m]	Exceedence Probability (1/Tr)	lan () (m3s.1)			g retu		
2	1	1947	637.1	87.0	0.011		using	the Lo	g-Pears	son 'l	ype III
3	2	1960	617.3	43.5	0.023						
4	3	1965	600.3	29.0	0.034	2 778				n	nethod
5	4	1946	597.5	21.8	0.046	2.776					
6	5	1941	572	17.4	0.057			-		-	
7	6	1948	549.3	14.5	0.069	2.740	log ()	. = I	οσΟ.	+ K	$\sigma_{\log \varrho_{obs}}$
8	7	1950	529.5	12.4	0.080	2.724	1052	pred -	vs ⊈obs		$\log Q_{abc}$
9	8	1968	521.2	10.9	0.092	2.717			_		
10	9	1925	515.4	9.7	0.103						
11	10	1940	501.2	8.7	0.115		Stage	1. Cale	ulate l	on of	r
12	11	2000	496.6	7.9	0.126	2.696					
13	12	1929	489.9	7.3	0.138		maxi	mum s	treamf	lows	
14	13	1957	470.1	6.7	0.149						
15	14	1964	470.1	6.2	0.161	2.672					
16	15	1928	455.9	5.8	0.172						
17	16	1939	447.4	5.4	0.184						
18	17	1936	441.7	5.1	0.195						
19	18	1944	438.9	4.8	0.207						
20	19	1926	433.3	4.6	0.218						
21	20	1923	431.B	4.4	0.230						
22	21	1955	424.8	4.1	0.241						
23	22	1958	424.8	4.0	0.253						
24	23	1990	412.B	3.8	0.264						
5	24	1998	403.9	3.6	0.276						
26	25	1924	402.1		0.287						
27 28	26 27	1932		3.3	0.299						
8	27	1945	402.1	3.2	0.310						
ñ	28	2004	400.366	3.1	0.322						
9U 31	29	1993	390.9	3.0	0.333						

Flood frequency analysis - issues

- A major assumption is that the observation record should be from homogeneous conditions:
 - This means that each flood needs to occur under the same type of conditions.
 - Basin alterations (e.g. urbanisation) alter the behaviour of flood events, and can dramatically reduce the number of years of homogeneous data
 - For example, urbanisation 20 years ago means that a 100-year record could be reduced to only 20 useable years

Flood frequency analysis

- More Information:
 - Oregon State University website:
 - http://water.oregonstate.edu/streamflow/analysis/floodfreq/
 - MetEd website Flood Frequency course:
 - <u>http://www.meted.ucar.edu/hydro/basic/FloodFrequency/</u>

Flood frequency and climate change

- As well as changing *averages*, climate change is likely to affect *extremes* of distributions.
- Possible effect of climate change on events:
 - Increased *frequency* and *magnitude* (return periods decreasing)
 - Therefore, increased probability and consequences
- Changes the risk and may increase vulnerability (risk management strategy no longer sufficient).

Flood frequency and climate change

- Climate change = non-homogeneous conditions
 - Past flood events are no longer a reliable indicator of the probability of future events
 - Complicates our analysis difficult to determine length of reliable record
 - Change in probability may be cyclical in line with natural climate variability e.g. ENSO

Flood risk and climate change

- If climate change is changing risk, good risk management will need to predict this – requires climate prediction
 - Problem this is extremely difficult, and full of uncertainty!